Publications

Google scholar

16) Penman, D.E., Rooney, A. D., Coupled carbon and silica cycle perturbations during the Marinoan Snowball Earth deglaciation (2019), Geology: Penman & Rooney 2019.pdf

15) Penman, D.E., Keller, A., D’haenens, S., Kirtland Turner, S., Hull, P.M. Atlantic deep-sea cherts associated with Eocene hyperthermal events (2019), Paleoceanography & Paleoclimatology): Penman et al., 2019 P&P.pdf

14) Farmer, J. R., Branson, O., Uchikawa, J., Penman, D. E., Hönisch, B., Zeebe, R. E., Boric acid and borate incorporation in inorganic calcite inferred from boron isotopes and surface kinetic modeling (2018). Geochemica et Cosmochemica Acta, in press. Farmer et al., 2018 GCA

13) Penman, D. E., Zachos, J. C., New constraints on carbon release and recovery processes during the Paleocene-Eocene Thermal Maximum (2018). Environmental Research Letters. https://doi.org/10.1088/1748-9326/aae285 Penman & Zachos, 2018 ERL

12) Babila, T. L., Penman, D. E., Hönisch, B., Kelly, D. C., Bralower, T. J., Rosenthal, Y., & Zachos, J. C. (2018). Capturing the global signature of surface ocean acidification during the Palaeocene-Eocene Thermal Maximum. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 376(2130). Babila et al., 2018 PTRSA

11) Expedition 371 Scientists (2018). Tasman Frontier Subduction Initiation and Paleogene Climate. IODP Prel. Rept., 371. doi:10.14379/iodp.pr.371.2018

10) Uchikawa, J., Harper, D. T., Penman, D. E., Zachos, J. C., Zeebe, R. E. (2017). Influence of solution chemistry on boron content in inorganic calcite grown in artificial seawater, Geochemica et Cosmochemica Acta 218 (2017): 291-307 Uchikawa et al., 2017

9) Hull, P.M., Bohaty, S.M., Cameron, A., Coxall, H.K., D’haenens, S., de Vleeschouwer, D., Elder, L.E., Friedrich, O., Kerr, K., Kirtland Turner, S., Kordesch, W.E.C., Moriya, K., Norris, R.D., Opdyke, B.N., Penman, D. E., Pälike, H., Sexton, P., Vahlenkamp, M., Wilson, P., Wu, F., Zachos, J.C. (2017). Data Report: coarse fraction record for the Eocene megasplice at IODP Sites U1406, U1408, U1409, and U1411. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, Volume 342. Hull et al., 2017

8) Penman, D. E. (2016). Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum. Geology 44.9 (2016): 731-734. Penman, 2016 Geology

7) Carter, S. C., Griffith, E. M., Penman, D. E. (2016). Peak intervals of equatorial Pacific export production during the Middle Miocene Climate Transition, Geology44.11 (2016): 923-926. Carter et al., 2016

6) Penman, D. E., Kirtland Turner, S., Sexton, P. F., Norris, R. D., Dickson, A. J., Boulila, S., Ridgwell, A., Zeebe, R. E., Zachos, J. C., Cameron, A., Westerhold, T., Röhl, U. (2016). An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum, Nature Geoscience, 9, 575-580. Penman et al., 2016 Nature Geoscience

5) Henehan, M. J., Hull, P. M., Penman, D. E., Schmidt, D. N., Rae, J. W. (2016). Biogeochemical significance of Pelagic Ecosystem Function: An end-Cretaceous Case Study. Phil. Trans Royal Society B, 371(1694), 20150510. Henehan et al., 2016 Phil Trans B

4) Uchikawa, J., Penman, D. E., Zeebe, R. E., Zachos, J. C. (2015). Experimental evidence for kinetic effects on B/Ca in synthetic calcite: Implications for potential B(OH)4 and B(OH)3 incorporation, Geochimica et Costmochimica Acta, 150, 171-191. Uchikawa et al., 2015

3) Penman, D. E., B. Hönisch, R. E. Zeebe, E. Thomas, and J. C. Zachos (2014). Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum, Paleoceanography, 29, 357–369. Penman et al., 2014 Paleoceanography

2) Expedition 342 Scientists (2013). Paleogene Newfoundland sediment drifts. IODP Prel. Rept., 342. doi:10.2204/iodp.pr.342.2012

1) Penman, D. E., Hönisch, B., Rasbury, E. T., Hemming, N. G., & Spero, H. J. (2013). Boron, carbon, and oxygen isotopic composition of brachiopod shells: Intra-shell variability, controls, and potential as a paleo-pH recorder. Chemical Geology, 340, 32-39. Penman et al., 2013 Chemical Geology